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Abstract

This paper presents the results of the theoretindl practical analysisf selected features of the functior
conditional average value of the absolute valudesfyed signalGAAV). The results obtained with ti@AAV
methodhave been compared with the results obtained biaadetf cross correlatiorCCF), which is often gec
at the measurements of random signal time dédlag.paper is divided into five sections. The fisstlevoted t
a short introduction to the subject of the papére Todel of measured stochastic signals is destiib8ectiol
2. The fundamentals of time delay estimation usd@F and CAAV are presented in Section 3. The stan
deviations of both functions in their extreme psiare evaluated and compared. The results of empeta
investigations are discussed in Section 4. Commiteulations were used to evaluate the performance o
CAAV and CCF methods. The signal and the noise were Gaussiadomanvariables, produced by
pseudorandom noise generator. The experimentadatardeviations of both functions for the chosemail tc
noise ratio 8NR were obtained and compared. All simulation reswlere averaged for 1000 independent |
It should be noted that the experimental resulteevetose to the theoretical values. The conclusant fina
remarks were included in Section 5. The authorslcole that theCAAVmethod described in this paper has
standard deviation in the extreme point tt@@F and can be applied to time delay measurement afore
signals.
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1. Introduction

Time delay estimation is a problem quite frequersiydied in signal processing. The
problem is significant in such areas as radar telogy, radio-astronomy, location of
interference transfer paths or contact-free measemés of transport parameters.
Determination of the time delay of stochastic signmaceived from two or more sensors is
commonly carried out with the use of statisticaltimels. This problem has been thoroughly
presented in the literature [1-8] which describear@ety of methods consisting of the analysis
of signals in the time and frequency domains. Amahg traditional methods used for
stationary signals, the most common one is direxdszcorrelation@CF) in the time domain
and the phase of cross-spectral power density énftbquency domain [3, 9-12]. Other
approaches can be used in specific conditionserdifttial methods [4, 6], the correlation
method with the Hilbert transform [1, 13-15] or ately unpopular methods based on
conditional averaging of signals [16-19].

This paper presents the results of selected rdséatie the features of the method which
uses the function of conditional averaging of thelaged signal absolute valu€AAV)
[16, 17]. Theoretical and experimental standardat®ns of both functions in extreme points
were evaluated and compared with a discrete estimaft CAAV and a direct discrete
estimator ofCCF for the assumed signal models. The signal to naite values $NR were
determined for the assumed signal models, whereatladyzed method is characterized by
smaller standard deviations of estimation for dipeparameters of the analysis.
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2. M easur ement signal models

In the case of many delay time estimations (i.easneements of transport parameters of
solids and flows), the relation for signad®) andy(t) received from two sensors is usually
given by the following formula [2]:

y(t) =clx(t-7, )+ A1), @)

where:x(t) is the stationary random signal with a normalbaitality distributionN(0, &),
frequency ban® and the spectral power density:

G 0<f<B
Gxx(f)={

0 f>B ’ @

¢, Gare the constant factorg; = d/V is the transport delay equal to the quotient efgbnsor
sparing distancd and the average velocity of objattz(t) is the white noise, non-correlated
with signalx(t), with the distribution oiN(0, o;). The autocorrelation function of signs(t)

has the following form:
sin27Bt
R(7)=G . 3
o (T) B( Ty j 3

3. Direct cross-correlation and the arithmetic conditional average value of the delayed
signal absolute valuein thetime delay estimation

Cross-correlatiorR,(7) of signals described with the relation (1) can dyeen in the
following form [1]:

R (T)=E[(X(t)y(t+7)] = cR(T-1,), (4)

whereE[ ] is the expected value operation. The functiona@)ieves the maximum value
for 7= 1, so that the delay can be determined as the amguofighe main extreme of this
function:

1, = argmaxR (7)) = arg{R (7, )} . )

Following normalization, the correlation (4) is edto:

Ry(T)  _cR.(T-17,)

o.(T)= , (6)
" JR(OR,(0) 0,0,
while when replacing with = :
0) co?
pxy( TO ) = Rxx( ) - X . (7)
g0, 0,0,

Since signalx(t) andz(t) are non-correlated:

o, =yca, ) +a? . ®)

When replacing (7) with (8) and defining the sigtminoise ratio aSNR < a;/a,)? , the
result is:

_ 1 -1/2
pxy(TO)_|:1+ CZSNRj| . (9)

When there is no disturbangg(n) = 1.
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If signalsx(t) andy(t) have the length3.,, the standard deviation of tl&CF estimator
can be formulated as follows [1]:

olR,(10)|= { [&(O)m(0>+&y(ro)]} (10)

2BT,

total

The relation (10) is just for the high valuesTefa (T, >1QT\ and BT,

total

>5)
As for the computer methods of analys®BT,., =N, [2, 13] is assumed, where
Niowa = Tt / 4t , @and4t is the properly selected sampling interval. Whstingating theCCF

with the pairs of non-correlated samples dividgd k cycles and by transforming (10) taking
(9) into consideration, the result is the relatidithe normalized standard deviatian

-~ _ J[Ieéxy( 7, )] _ i[ 1 j 12 1
s[ny(ro )]_7ny(fo) *IN 2+ 2SR . (11)
The discreteCCF estimator can be expressed as:
~ 1 N
Ry(1) =7 2 X(ny(n+1), (12)

where:l = 7/4t, n=t/At.
To obtain of time delayr it is possible to use also terms: a minimum of ditonal
varianceo; " (r) or a minimum of conditional expected vallérguxzo.The expected conditional

value of the delayed signal absolute value forcireditionx(t) = 0 (the formula is simplified
as follows:y(t) = y andx(t) = x) is defined as follows [16]:

A=A, =By )= Iy plyl ). (13)

where prszo) is the conditional probability density for the & absolute valug at the

conditionx = 0.

A good estimator of the expected conditional va{t8) is the arithmetic conditional
average value of the delayed signal absolute veBAAV). In practice, its determination
entails detection of the non-cross-correlated mst@zero transition of the original sign4t),
starting the registration of the delayed sigy(@ fragments in those moments and averaging
the set of their absolute value. The discrete edtm of CAAV can be formulated
as follows [18]:

A=)

where M is the number of zero transitions of the origirsdnal included during the
determination oCAAV.
The relationship o€EAAVand the normalize@CF is defined by the formula [16]:

A (1=, -3, 0] (15)

and the following relation applied for the normawﬁMqu‘(r) :

a1 ( )_IS?)(/)max V pxy(r) (16)

The transport delay can be determined as the amgupfethe main minimum of the
function (15) or (16):

X(n)=0 = Z\y(nﬂ)H X(1)=0" (14)



A. Kowalczyk, R. Hanus, A. Szlachta: INVESTIGAT@INTHE STATISTICAL METHOD OF TIME DELAY ESTIMATIBASED ON...

r, = arg{min A (7)} =arg { A, (7, )} (17)
Examples of runs of the normalized functicd€F and CAAV for z(t) = 0 are given in
Fig. 1.
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Fig. 1. Examples of normalize€iCF andCAAVfunctions.

An increase of the disturbance value results indigrease in the mal®CF maximum in
lieu with the relation (9) and, correspondingly,iacrease of the main minimum GRAV.
The relative standard deviation of tBAAV estimator, whera = 1, can be formulated as

follows [18]: a[ ]
,\ _ Z‘M(To) | 1(m_ 1 vz
S[A“(m]_ Ay (T e {M(z 1)1+CZSNFJ ' 4o
The comparison of (18) and (11) results in theofeihg:
i LT_ l 1/2
f[ﬁy\(fo)]: N[Z l)[l*'cZSNRj , (19)
Rl M (2L
c®SNF

The plot of relation (19) where the factor 1, defining several values of theM ratio, is
given in Fig. 2. The analyse&aNRrange shows that the relative standard deviatiddAAVis
always less than the corresponding deviatio@€GF when theN/M ration is equal to or less
than 10. In reality, th&/M ratio value depends on the correlation intervahef measurement
signals, which determine the choice of non-coreslatamples.
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Fig. 2. Plots of the relation (19) for selectedues ofN/M ratio.
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4, Results of simulations

For verification of theoretical considerations firactical analysis was conducted using an
application in the LabVIEW software environment.inds the computer simulation it is
possible to examination of influence of experimenparameters forCAAV and CCF
characteristics. Reciprocally delayed stochastjnads were generated, which corresponded to
the model (1), followed by the determination ofcdéte CCF (12) andCAAV (14) estimators
for the givenSNRvalues, taking into account the non-correlated@arpairs.

The assumed number of samples was 200,000, theasthrignal deviatiowx =1,c=1
and the transport deldy was 100 samples. The examples of runs of the redt&@@CF and
CAAV characteristics foo, = 0 have been presented in Fig. 3. The next sthgjge practical
analysis entailed multiple repetitions of the siatidn and determination of the relative
experimental standard deviations for the determotetacteristics at the extreme points:

1 K I’\?xy( ) ny( ) 2
R = 20
[ y ] K _1 AR (l)' max ( )
1x y\(l ) AM(I )

[AM(l )] K & Z W ) (22)

where:K is the number of test repetitions.
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Fig. 3.CCFandCAAVobtained from the simulation.

The simulations were run for the giv&NRvalues. Fig. 4 and 5 show example runs of
CCF andCAAVat extreme points, where the single relative stahdaviation range is shown
as determined using the formulas (20) and (21) Kfer1000. The characteristics shown in
Fig. 4 are obtained fay, =
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Fig. 4.CCF andCAAVforg,=0
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The runs ofCCFandCAAVobtained folSNR= 4 (a),SNR= 1 (b) andSNR= 0.25 (c)
accordingly where the giveW/M = 2 for the modelled signals, are shown in Fig. 5.
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Fig. 5.CCF andCAAVfor SNR= 4 (a),SNR= 1 (b) andSNR= 0.25 (c).

By determining the quotient of the relations (2@} 420), the relative standard deviations
of CAAV and CCF can be compared for the selected delay dependinth@8NR Fig. 6
presents the plot of the relations:

A (1) 2R, )] = f(snR, (22)
compared to the theoretical run (19) M = 1 andN/M = 2.
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Fig. 6. Plots of relations (19) and (22) féfM = 1 andN/M =2.
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The results of the practical analysis in the ensiveveyed range oBNRdo not depart
greatly from the calculations (in favour of tB&\AV characteristic), which can be specifically
seen in the range &N\ Rvalues approximated to unity.

5. Conclusion

This work entailed the comparison of relative stadddeviations of the direct cross-
correlation to the conditional average value ofdbtayed signal absolute value at the extreme
points for the assumed signal models and the g&MR values. The theoretical analysis
implies that the relative standard deviation of @AV values in the range &/M equal to or
less than 10 is always less than the correspor@@ig values irrespective of tHeNRvalues.
The computer simulations confirm the results ofotletical deliberations and show an
influence of experimental parameters f6AAV and CCF characteristics. The standard
deviation values o€CF andCAAVat the extreme points significantly affect the utaiaty of
the transport delay determined by using the funstioThis problem and metrological
properties of another non-linear extreme charasttesi are currently undergoing further
investigation.
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